ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Lab 6 Report: Path Planning

Team 16: Sameen Ahmad, Phillip Johnson, Trevor Johst, Maxwell Zetina-Jimenez, Ellen Zhang

1 INTRODUCTION
Author: Sameen Ahmad
ATH planning is a core aspect of autonomous operations
P that allows vehicles to generate and follow a trajectory
from a start pose, or position and orientation, to a goal pose.
Path planning is an active area of research that involves ex-
ploring search-based and sampling-based motion planning
algorithms to determine the shortest path, while avoiding
collisions in a given environment. Integrating controls onto
our race car is equally important to the path planning aspect
of this lab, enabling our car to accurately follow a predefined
trajectory.

The goal of this lab was to implement an algorithm to
plan a trajectory from the car’s current pose to a chosen
goal pose in a known occupancy grip map. Additionally,
we were instructed to integrate pure pursuit control onto
our race car, allowing the car to follow the trajectory while
avoiding collisions.

We developed and tested breadth-first search (BFS),
randomly-exploring random trees (RRT*) and A* algo-
rithms in simulation. After significant testing, we decided
to integrate A* on our race car.

Despite using A* for this lab, we realized its limited by
its inability to account for the car’s dynamics. Therefore, we
plan to use RRT* with Dubins curve dynamics for the final
challenge. After generating a trajectory, we employ pure
pursuit to computes the angular velocity that the race car
should drive at so it aligns with a look ahead point along
the predefined trajectory.

This lab relies heavily on the Monte Carlo localization
algorithm that we implemented previously. We utilize on
our particle filter to determine the pose of the car in a known
environment, allowing our generated trajectory to begin at
the correct position. The next steps involve directly applying
our path planning and controls algorithms towards the final
challenge, which involves racing against other cars and
safely navigating dynamic environments.

Editor: Ellen Zhang
2 TECHNICAL APPROACH
Author: Sameen Ahmad

In this lab, we were tasked with implementing an algo-
rithm that plans a path and follows it with pure pursuit con-
trols while avoiding collisions. Our team explored search-
based path planning by developing BFS, and A*, before
deciding to integrate A* onto our race car.

We began by discretizing our occupancy map of the
State basement to create our search domain for A* to
parse through. We also eroded the map’s edges to add
clearance around obstacles so the robot would be able to
avoid collisions in reality. Beginning at the start node, A*
computes the total cost of each of the neighboring nodes
by summing the cost of a node to the start point and the
estimated cost of a node to the goal. We utilize Euclidean

distance, which is the shortest distance between two points,
in our heuristic function. Then the algorithm examines the
neighboring node with the lowest cost and subsequently
examines its neighbors, eventually constructing a path that
has the lowest cost from the start to the goal pose. We recog-
nized that A* possesses shortcomings, so we also explored
sample-based planning and plan to implement RRT* with
Dubin curves so our algorithm is able to better respond
to the dynamics of the racecar. After we constructed our
trajectory, we implemented pure pursuit to enable our car
to drive along the predefined path. Pure pursuit finds the
intersection between a circle defined by our look ahead
distance and the trajectory to find the intersection point.
Then, it computes angular velocity commands so the race
car is able to reach the look ahead point. The look ahead
point continuously moves along the path, allowing the car
to follow along.

Editor: Maxwell Zetina-Jimenez

2.1 Search-Based Path Planning

Author: Maxwell Zetina-Jimenez
One strategy to path planning is using graph-search
algorithms. An advantage of these algorithms is that they
are complete, meaning that they terminate, find a path when
one exists, and indicate failure when a path does not exist.
Furthermore, these algorithms find the shortest path from
the start to the goal. However, graph search requires a
discrete search space. Therefore, search-based path planning
can be tackled by first discretizing the continuous space into
a graph and then by searching the graph to find a path. In
this lab, we explored a dynamic discretization method and
two graph-search algorithms: BFS and A*.
Editor: Trevor Johst

2.1.1 Map Discretization and Erosion

Author: Maxwell Zetina-Jimenez
The map of Stata basement was represented as an Oc-
cupancy Grid where each pixel in the map’s image had a
probability of being occupied. (Probabilities ranged between
0 and 100 where 0 indicated a free space and 100 indicated
an obstacle.) The first step in path planning in this map
was performing a precomputed erosion so that pixels close
to an occupied pixel would also be labeled with a high
probability of being occupied. We chose to do this image
processing to enlarge the obstacles in the map. As seen in
Fig.1, the erosion’s goal was to thicken the walls of the
original hallways so that any path planner could instead
search the eroded map and not find paths that would be
against the wall or too close to corners, which would make
it difficult for the robot to follow and execute.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

(a) Original Map

(b) Eroded Map

Fig. 1: Original Map vs. Eroded Map Eroding the map with
a Disk element (8 pixel radius) allowed for finding feasible
trajectories that were not too close to walls and could be
better executed by the robot in real space.

To discretize the space, rather than each pixel be a node,
nodes were the (z,y) real coordinate of the center of each 1
meter by 1 meter unit square in the map. A certain node u at
point (z,y) has eight edges, which connect to the nodes at
the centers of the eight surrounding cells at points (z—A, y),
(x,y+A), (z+A,y), (z,y—A), (z+A,y+A), (z+A,y—A),
(x—Ay+A), (r—Ajy— A) where A = 1.

However, the uniform spacing of the nodes in the graph
changed if near an obstacle — when the corresponding
(u,v) pixel of the node’s (z, y) coordinate has a probability
of being occupied. If at least one of u’s neighboring nodes
is determined to be an obstacle, the new eight neighbors
would be the (z,y) points at a distance of A/2 away. For
this dynamic graph, the initial choice of A = 1 step size was
made as a greedy choice: if there is no obstacle anywhere
nearby, the search could traverse more physical space using
less nodes. The logic behind the compression to a step size
of A/2 was that if one node is at an obstacle location, then
we thought taking smaller steps (while preserving being
a factor of the original step size) would help find a path
through tighter spaces between obstacles. This discretization
behavior can be seen in Fig.2.

?]

Fig. 2: Dicretization of Search Space For a given node (in
purple), if at least one neighbor node is an obstacle (in
red), then the remaining nodes (light blue) will no longer
be checked and instead the new eight neighbors are closer
to the node. This allows the robot to take advantage of free
space yet find paths in tight spaces.

Editor: Trevor Johst

2.1.2 Breadth-First Search

Author: Maxwell Zetina-Jimenez
BFS is a linear time algorithm that finds the shortest path
from a start node to a goal node in an unweighted graph.
In the context of the lab, we implemented BFS to path plan
from the starting pose to the goal pose in our discretized
search space. As described in Algorithm 1, BFS keeps track
of the nodes (the (z,y) coordinates in the map), it visits
and each node’s parent. The algorithm thus starts at the
source node and adds each neighbor to a queue of nodes
to visit next. Once visited, a node is added to the set of
visited nodes so that a node is only visited if it has not been
visited before. BFS continues to grab nodes from the queue
and expand outwards like this until either the goal node
is reached or the queue becomes empty (the whole graph
is searched). If the goal node is reached, then the path is
traced back through the parents of each node back to the
start node. Otherwise, an empty path is returned, indicating
the lack of a path from start to goal.

Algorithm 1 Breadth-First Search

visited < {wstart}
queue < [Tsart]
while queue # () do
x; = QUEUEPOP()
if ISGOAL(z;) then return PATHFROM(z;)
end if
for z; in NEIGHBORS(z;) do
if x; ¢ visited then
visited < {z;}
queue < {x;}
parent|z;] = x;
end if
end for
end while

In practice, this algorithm would take the starting point
(xs,ys) and goal point (z4,y,) and associate them to their
closest node in the discretized space (Zs ciosest, Ys,closest)
and (g, ciosest; Yg,closest)- BFS would then search the space
until the goal was reached. As shown in Fig. 3, this resulted
in paths that were not optimal in terms of dynamics for the
robot’s driving; due to the discretization of the search space,
there were many sharp changes in direction and corner-
cutting in the paths.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Fig. 3: A path generated by BFS Because of the discretiza-
tion necessary to be able to search the space with BFS, paths
are not as smooth for driving feasibility. There are staircase-
like segments are sharp-angled turns.

Editor: Trevor Johst

213 A

Author: Sameen Ahmad

The A* algorithm is a prominent path finding technique
that employs a heuristic approach to effectively navigate
graphs and generate a path from a starting point to a goal.

A* combines aspects of Djikstra’s Algorithm and Greedy
BFS to generate a path that consists of nodes with the lowest
cost. Dijkstra’s Algorithm examines nodes that are closest
to the start point and expands its search outwards until it
comes across the goal. Then, it generates the shortest path
from the start point to the goal. However, the algorithm is
often computationally slow. Greedy BFS generates a path
by examining nodes that are closest to the goal and working
backwards to construct a path to the start point. It relies on a
heuristic (an estimation method) of the distance of a vertex
from the goal when considering which nodes to explore first.

A* aims to generate a trajectory with the lowest cost from
the start and end states. Cost is a measure of the resources
that the algorithm requires to reach a given node, which is
a possible position that the car can occupy as defined by the
search domain. The total cost of a node also depends on a
heuristic function, which estimates the cost of a node to the
goal. Beginning at the start node, the algorithm calculates
the costs of neighboring nodes and constructs a path based
on nodes with the lowest cost.

A* computes the total cost of the node with the following
equation

f(n) = g(n) + h(n) @

Here, f(n) is the total cost of any given node n. f(n) is
the sum of the exact cost from the start to n, represented
by g(n) and the heuristic estimated cost from n to the goal,
denoted as h(n). We define h(n) as the distance between the
start point and the end point.

There were several possibilities to compute distance
including Manhattan, Diagonal, and Euclidean.

3

Manhattan distance is the standard heuristic for square
grid that allows four directions of movement. It computes
the distance, d, between adjacent grid spaces by

d=Azxz+ Ay ()

Diagonal distance is applicable on square grids that
allow for eight directions of movement, including diagonal
motion. This can be computed by

d = (Az + Ay) *xmin((Az, Ay)) 3)

Euclidean distance computes the shortest distance be-

tween two points given that movement at any angle is
allowed. It is calculated as

d=/(Ax? + Ay?) 4)

We chose the Euclidean distance as our heuristic metric
as it avoids overestimation, unlike Manhattan and Diagonal
distances.

Given a search domain, A* aims to minimize the cost
of the path by balancing g(n) and h(n) for each node. Our
implementation relies on a PriorityQueue (), which is a
data structure where each element is associated with a prior-
ity. We build a queue to store the nodes that are candidates
for examining. We also initialize a dictionary to keep track of
each node that has been visited and their neighbors, linking
a parent node with its children. The algorithm first creates a
start node and adds it to the priority queue. Then, it iterates
until the queue is empty, extracting nodes and exploring
their neighbors. If the goal node is found, it returns the path.
Otherwise, for each neighbor, it checks if it has been visited
before. If not, it creates a new node and adds it to the queue.
If the neighbor has been visited, but a shorter path has been
found, it updates the node’s scores and reinserts it into the
queue. This process is described in Algorithm 2.

After comparing the performance of BFS and A*, we
decided to integrate A* onto the race car since it is com-
putationally faster and more efficient at generating optimal
trajectories, which are the shortest path for our level of
discretization.

Editor: Ellen Zhang

2.2 Sample-Based Path Planning

Author: Trevor Johst

The primary downside of many search-based algorithms
is their inability to account for the dynamics of the vehicle.
When a planner such as A* finds a path from the start
to the goal, it treats the world as a discrete grid with no
regard for the orientation of the robot or how it travels. It is
possible to extend these algorithms into higher dimensions
and account for dynamics, but this can cause a serious
increase in computation time.

Sample-based path planning differs from search-based
approaches in that it operates on random samples of the
configuration space (c-space). This can offer a number of
advantages such as faster computation, the ability to incor-
porate dynamics, and online planning. Treating our robot
as a 2D car with Ackermann steering we will have either
an R? c-space without dynamics, or an SE(2) c-space with
dynamics.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024
Algorithm 2 A*

1: nodelookup < {Zstart}
2: queue < |Tstart)
3: while queue # () do

4 node <— QUEUEGET()

5 if ISGOAL(node.pose) then

6: return PATHFROM (node)

7 end if

8 for n in NEIGHBORS(z;) do

9: if n ¢ nodelookup then
10: n_obj + new Node
11: nodelookup[n] + n_obj
12: else
13: n_obj <+ nodelookup(n]

14: end if

15: tentative_gscore = gscore + hscore
16: if tentative_gscore < n_obj.score then
17: n_obj.gscore — tentative_gscore
18: n_obj.fscore < tentative_gscore + hscore
19: if n_obj ¢ queue then
20: QUEUEPUT(n_obj)
21: end if
22: end if

23: end for
24: end while

Two popular sample-based path planning algorithms are
Rapidly-exploring Random Trees (RRT) and Probabilistic
Road Maps (PRM). RRT is a single-query planner that builds
a tree from the start to goal and returns a single path. PRM
builds a map of nodes on the occupancy map and can
find multiple paths across it using standard search-based
methods.

Editor: Sameen Ahmad

2.2.1 Dynamics

Author: Trevor Johst

To leverage the advantage of traversable paths, we chose
to implement RRT with Dubins curve dynamics [1]. Similar
to the search-based approach, we use the same occupancy
map to determine obstacles in the environment. If we erode
our map by a sufficient amount such that the robot could
feasibly occupy any position, our resultant trajectories will
be both dynamically possible and collision free. For our
implementation we used the pydubins library, which con-
structs these paths between any two states when given a
turn radius.

A Dubins curve is the shortest possible path between
two points in a two-dimensional plane when a constraint
is put on the maximum curvature of the path, as shown
in Fig. 4. By specifying both the initial and final state,
x = [z,y, 0], we are able to generate a dynamically plausible
path between them. The lower bound for the turn radius
could be determined from the maximum steering angle and
some geometry. In reality these small radii turns can still
prove difficult to follow, so a much larger value of 0.4
m was used for the lower bound as determined through
experimentation. Editor: Sameen Ahmad

RSL LRL

Fig. 4: Examples of Dubins curves between various points.
Each path is generated following the curvature of a circle
with a set radius, and connecting the circles via their tan-

RSR

gents.
Source: [2]
222 RRT*

Author: Trevor Johst
The concept behind RRT* is to sample the configuration
space randomly, connecting states as you do so to generate
a tree. Starting from the initial state, the tree will radiate
outwards and explore new areas. When the tree is finally
connected to the goal, you know that a path exists from the
start to the goal and no search is necessary. An example path
is pictured in Fig. 5.

e O

Fig. 5: A path generated by RRT* with dynamics. The initial
pose of the robot (the green node) was facing towards the
top of the image. The robot is able to preemptively turn to
make the tight corner.

The * at the end of RRT* indicates some form of opti-
mality. Since RRT probabilistically constructs its tree, this
is only guaranteed if also rewire the tree to remove longer
paths and then run it for an infinite amount of time. RRT*
is only asymptotically optimal, meaning it approaches the
optimal solution but never reaches it. This addition of the
rewiring step will produce smoother paths, but will never
give a truly optimal result in finite runtime.

Sampling a point simply means generating a random
position. To speed up the collision detection phase, we

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

do all of our sampling and planning from the perspective
of the occupancy map, and transform the result to the
world frame. This means we are able to just generate an
integer value using random.randint that represents the
coordinates of some pixel on the occupancy map. The angle
of that position can then be randomly generated as a float
using random.uniform between —m and .

It is important that we also sample the goal position
with some fixed probability. This effectively biases the path
towards the goal during the steering phase, and also makes
it easier to reach the exact end goal position. A sample rate
of 10% was chosen through experimentation.

Once the point is sampled, it must be connected to the
tree. A search is conducted through every node comparing
distances, and the nearest node is found. For the sake of
performance, the Squared Euclidean Distance (SED) is used.
Once this nearest node is found, the aforementioned Dubins
curve is generated between our two states for the steering
phase. Finally, the curve is interpolated to a set maximum
distance. This interpolation forces the tree to radiate out-
wards from already explored portions of the map and also
results in smoother final paths.

To determine if a path is collision free, we want to iterate
over every point on the path and individually check if they
are obstacles on the occupancy map. Because our points are
often interpolated to the curved portion of the Dubins path,
we can do some broad phase collision detection by checking
the middle-most point on the path first. We then iterate over
the path backwards, since it is known that the start of the
path is already in our tree. These two actions let us conduct
collision detection rapidly by ruling out paths if their most-
likely-to-collide points are occupied.

The final step in the RRT* loop is to rewire the tree, as
described in Algorithm 3. The initial step in this phase is
to find every other node that is within some distance of
the robot. To determine this radius, we use the formula
described in [3], which is outlined as

1/d
R = min [(legN) m} ©)

N

where N is the number of nodes, d is the dimension, and
7 is the set maximum rewiring distance. The value v is a
constant determined by the free space of the occupancy map
and is calculated as

1 -2
fyz2d* 14+ = *7'("17,0, (6)
d Uball

where n is the number of free tiles in the occupancy map,
a is the resolution of the occupancy map, and vy, is the
volume of the unit ball in your dimension d.

Algorithm 3 Rewire

R = CALCRADIUS(len(N))
Npear = FINDNEAR(R)
for x in N, .., do
path = STEER(Z, Tpew)
if COLLISIONFREE(path) then
newCost = x.cost + COST(path)
if Tyeq.cost < newCost then
Tpew-parent =
Tpew-c0st = newCost
Tnew-path = path
end if
end if
end for

Once this distance is determined, we find every node
with an SED of less than R?. For every node within our
search radius, we then construct a new Dubins path from
the node we are rewiring. If a new Dubins path offers a
shorter distance from the start, it will become the new parent
node of the node we are rewiring, changing the tree. This
distance is tracked by having every node track the path
length from the start to that node, reducing computation
time for rewiring significantly.

This loop is repeated until a full path to the goal is found.
Once it is is found, we are able to simply reconstruct the
path backwards from the goal to the start and return it. The
full algorithm is outlined in Algorithm 4.

Algorithm 4 RRT*

tree <— Tstqrt
fori=1tondo
Zrand = SAMPLE()
Znear = NEAR(Zyqnd, tree)
Tnew, path = STEER(xranda xnear)
if COLLISIONFREE(path) then
tree < Tpew
tree = REWIRE(tree, Tpew)
if Tpeyw 18 Tgoq then
return PATHTO(Ze1)
end if
end if
end for

Editor: Phillip Johnson

2.3 Trajectory Following

Author: Phillip Johnson

Once a path is found, the new task becomes creating

a controller that can quickly follow the created path. To do

this, different types of controllers were considered including

PID and various pure pursuit algorithms. We eventually set-

tled on a pure pursuit algorithm which works by following

the point at which the path intersects with the look-ahead

circle. This section will walk through the decision process

and theory behind the different controllers and why the
eventual decision was made about the current algorithm.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

2.3.1 Follower Considerations

Author: Phillip Johnson
Three algorithms were considered when deciding how
to follow the provided trajectory:

1) PID
2) Pure pursuit based on intersection points
3) Pure pursuit based on path intersection

This section will discuss the theory behind each algo-
rithm and why it was either chosen or not chosen.

232 PID

Author: Phillip Johnson

PID (which stands for proportional-integral-derivative)

control is a very well-studied controller for actively adapt-

ing to the control subject’s environment. Proportional con-

trol works to minimize the control error with the following
equation

u=—kx*xzx @)

In this case, x would be the difference between the
desired angle toward the next point and the actual angle.
Thus, the proportional control for the robot is better repre-

sented by the following equation, where the tan~! is a four
quadrant arctan
Uy = _kp % tan_l Yactual — Ydesired (8)
Lactual — Tdesired
The derivative control in this case is shown as
Ug = —kq * U 9)
Finally, the integral control can be shown as
u; = —k; * /up (10)

The PID algorithm worked well in simulation. However,
the multiple environments that the robot needs to travel at
high speed meant that tuning the gains would be incredibly
difficult to do. Thus, the decision was made to switch to
pure pursuit control.

Editor: Maxwell Zetina-Jimenez

2.3.3 Basic Pure Pursuit

Author: Phillip Johnson
The pure pursuit controller works by projecting a point
onto a circle at a set distance and finding the angle between
the car’s position and the projected point. This process is
represented in Fig. 6.
As seen in Fig. 6, the pure pursuit algorithm minimizes
71 which is the angle between the robot and the intersection
of the path on the look-ahead circle.

\
Currest Vielacle |
Pasitian (X, 1) I

!

!

Fig. 6: Basic Pure Pursuit Controller [4] The lookahead
point is found by projecting a point onto a circle.

The pure pursuit algorithm is shown in Algorithm 5.

As shown in Algorithm 5, the basic pure pursuit works
by first finding the closest path point st relative to the
car’s pose x. Then, the slope to that point is found and
projected onto the circle with the radius equal to the look-
ahead distance. Finally, the angle between the car and the
projection is found and passed in as the drive control.

Algorithm 5 Pure Pursuit

Zelosest = FINDCLOSEST ()

slope = Feteeesff

intersection = PROJECTCIRCLE(slope, lookahead)

§ = arctan2(2 x wheelbase * intersect[1], lookahead?)

DRIVE(speed, 0)

2.3.4 Pure Pursuit with Intersection Points
Author: Phillip Johnson

The initial approach to trajectory following was to prune
the linear path output by the A* algorithm to only contain
line segment intersection points. Then, the basic pure pur-
suit controller could be used with the remaining path points.

On the car, this can be represented in simulation as
shown in Fig. 7. Here, the black point is the projected
look-ahead based on the purple intersection point that is
closest to the robot. Projecting a far look-ahead allows for
minimal turning angle change, but controlling based on
closely-spaced points leads to problems with overturning.
This can be seen in Fig. 8.

As shown in Fig. 8, the circle projection creates an
extreme turning angle with tightly-spaced points. If the path
that was created was simple line segments, this algorithm
would be sufficient. However, future path planning will use
dynamics and non-linear paths, so a different pure pursuit
algorithm must be used.

Editor: Maxwell Zetina-Jimenez

2.3.5 Pure Pursuit with Path Intersection

Author: Phillip Johnson
To handle tightly-spaced points, an update to the pure
pursuit algorithm was implemented to instead focus on
the intersection between the path and the look-ahead circle.
This is shown in Algorithm 6 and works by searching line
segments between the closest two points and finding the
distance of the intersection point on the circle. Finally, the
index of the point corresponding to the segment with the
closest circle intersection is returned.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Fig. 7: Pure pursuit based on intersection point. The car
follows the closest intersection point through calculations
based off the slope.

Q=

Fig. 8: Intersection-based pure pursuit fails with non-
linear path. The car would turn towards the black inter-
section point here which would cause it to go off course.

This update to the algorithm ends up with a pure pur-
suit follower as demonstrated in Fig. 9. With this update,
the pure pursuit algorithm can reliably follow non-linear
paths. The next section will evaluate this controller and how
reliably it is able to follow the path.

Algorithm 6 Line Intersection

min_distance = oo
closest_point = none
for x;, 2,41 in path do
distance = CIRCLEINTERSECT(Z;, T;+1)

if distance < min_distance then
min_distance = distance
closest_point = x;

end if
end for
return min_distance, closest_point

Editor: Maxwell Zetina-Jimenez

3 EXPERIMENTAL EVALUATION
Author: Ellen Zhang
The path planning and trajectory following are inte-
grated to create a race car program that effectively and
efficiently computes and then follows trajectories from its
initial pose to the goal pose. In this section, we quantita-
tively analyze various path planning algorithms (A*, BFS,
RRT, RRT*) in simulation and pure pursuit with path in-
tersection to evaluate the performance and discuss possible

improvements of the model.

Editor: Sameen Ahmad

\

Fig. 9: Pure pursuit based on path intersection. The look-
ahead point is shown in green, and is found by intersecting
the trajectory with a dynamic look-ahead distance.

3.1 Simulation

Author: Ellen Zhang

To evaluate the performance of path planning (BFS, A%,

RRT, RRT*) and trajectory following (pure pursuit with

path intersection) in simulation, we implement a variety of
metrics.

3.1.1 Path Planning

Author: Trevor Johst

When comparing path planning algorithms, the pri-
mary metrics of interest are computation time, trajectory
traversability, and path length. Computation time and path
length are rather straightforward to compare, but must be
averaged across multiple runs for probabilistic planners
such as RRT*.

Traversability is more difficult to quantify, but can be
estimated based on the physical path that is produced.
A planner that incorporates dynamics will inherently be
traversable in ideal scenarios, and all planners can be vi-
sually inspected for sharp corners or close encounters with
walls as is done in Fig. 10.

Computation time was recorded over four different set
paths, and each path was averaged over 15 runs. Each test
was chosen to compare how both path length and number
of turns impacted runtime. The results of the tests can be
seen in Table 1. A* consistently performed better than BFS,
which makes sense considering the addition of the heuristic.

RRT* is harder to compare, as it did better in some
situations and worse on others. It specifically struggled with
the narrow corners in the bottom right of the map, which
test 4 was entirely focused on. It is also worth noting that
RRT* almost always performed worst when considering the
maximum time and path length.

To determine how smooth a path is, generated trajecto-
ries were compared for the same initial conditions, as shown
in Fig. 10. Across all of the tests it was generally noted that
both A* and RRT* cut corners the closest.

It is especially worth noting test 3, which was purpose-
fully chosen to demonstrate another advantage of dynamics.
As shown in Fig. 11, A* finds a shorter path from the start
to the goal, but it is not dynamically feasible. The robot was
initialized pointing upwards in the hallway, which means
the path generated by A* is actually impossible to traverse
through pure pursuit alone.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Algorithm Test Time [s] Length [m]
Avg Max Avg Max
BFS 1 7 795 66.31 66.31
2 862 9.96 5836 58.36
3 427 59 4381 43.81
4 233 2.74 25.04 24.04
A* 1 451 55 67.17 67.17
2 459 526 59.73 59.73
3 206 239 43.05 43.05
4 0.6 093 2424 24.24
RRT* 1 453 1842 71.66 96.11
2 114 262 62.68 66.73
3 584 1726 81.01 11256
4 948 7461 4039 137.61

TABLE 1: Computation times for our three path planning
algorithms averaged over 15 runs. Test 1 had three turns, 2
had one, 3 had four turns if dynamically viable, 4 had two
turns.

RRT*

Fig. 10: Our three algorithms all finding a path on the
same initial conditions. RRT* and A* seem to cut some
of the corners too closely. Because RRT* incorporates the
dynamics, these trajectories should be possible, but they are
still worth noting.

RRT* A

L

Fig. 11: RRT* and A* both planning for test 3. Although
the path for A* is shorter, the robot was initialized as
pointing upwards from the start (green node). Because of
the required turn radius, the robot would not be able to
follow A*’s path.

Editor: Sameen Ahmad

3.1.2 Trajectory Following

Author: Ellen Zhang
To evaluate our pure pursuit with path intersection
performance, we followed a predetermined path in the Stata
basement as shown in Fig 12. We collected various numeri-
cal metrics. For our purposes, the accuracy of the racecar in
following the trajectory is defined as the difference between
the y coordinate of the car y.q» and the y coordinate of the
closest trajectory point in front of the car ycjosest:
1)

ETTOT = Ycar — Yclosest

We use the difference in y coordinates instead of the x
coordinates because in the car’s coordinate system, the y
axes are the left and right directions.

Furthermore, in order to analyze the trajectory of the car
when making turns, we plot the slope of the closest point as
well:

Yclosest

slope = (12)

ZLclosest

A high absolute value in slope indicates that that the
closest trajectory point in front of the car is to its left or
right, and that the car should make a turn. We plot both the
error from trajectory and slope in Fig 13 and Fig 14.

Upon observation of the racecar’s trajectory in simu-
lation, the racecar follows the path consistently, with no
noticeable deviations. This is evidenced in the plot, where
the absolute value of the error from trajectory never goes
above 0.5 meters, and generally stays between -0.2 and
0.2 meters. There are two peaks, notably, at around 13
and 17 seconds, in both the error and slope graphs. These
correspond to when the car is making a right-hand and left-
hand turn, respectively, in which case, the error tends to
be large because of the nature of our error formula, which
takes the differences in y coordinates. In turns, even though
the closest point is very close to the racecar, there will
still be a noticeable difference in the y coordinates because
the two positions lie on a curve instead of a straight line.
This may be an indication that our error metric might be
improved. Overall, the importance takeaway is that our
error remains consistently low, especially on straight lines
where the formula applies best, indicating that the pure
pursuit algorithm works well in following a trajectory.

Editor: Sameen Ahmad

3.2 Physical Implementation
Author: Ellen Zhang
Because the path planning operates in code, we only
need to evaluate the performance of the pure pursuit al-
gorithm. We test the racecar on the same path in real life as
in simulation.
Editor: Trevor Johst

3.2.1 Trajectory Following

Author: Ellen Zhang
We collect data for the same performance metrics, error
from trajectory and slope, for the racecar on the same

trajectory. The resulting plots are shown in Fig 15 and Fig
16.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Fig. 12: The racecar following the trajectory in simulation.
The red dot indicates the closest point, from which we
calculate the error of the pure pursuit algorithm in following
the trajectory

Error From Trajectory

0.2 4

0.0 4

Error{m)

1‘2 1‘4 1’6 1‘8 2‘0
Time (s} +1.7140916e3
Fig. 13: Plot of simulation error from trajectory vs time,
with error on the y axis. The error stays relatively low,

peaking when the racecar makes turns due to the nature of
our error formula.

The graphs have a noticeable difference when compared
to the simulation graphs, particularly the error graph. Over-
all, the commands calculated such as the turning angle
don’t change, but the way the car behaves in real life is
different than in simulation. For example, our racecar has a
consistent left bias when driving, and thus we add an offset
of 0.5 in our turning angle in real life to mitigate it. Because
the car behaves differently in real life than in simulation,
the program calculates different errors and slopes, which
explains why the graphs look different. Based on our obser-
vations, the car still follows the path relatively well, albeit
overturning on the right-hand turn in the beginning, which

Slope Over Time

Slope

1‘2 1:'-1 1’6 1‘8 2‘0
Time (s) +1.7140916€9
Fig. 14: Plot of simulation slope of closest point vs time,
with slope on the y axis. Higher absolute value slope

indicates the car should make a right or left turn, depending
on the sign.

Error From Trajectory

1’0 ll5 2’0 2‘5 32)
Time (s) +1.7140937¢8
Fig. 15: Plot of error from trajectory vs time, with error on

the y axis. The error has the same upper bound of 0.2 as
simulation, but a lower bound of -1.0 at one point.

is likely the cause of the high error at around 20 seconds,
when the car is off trajectory. Except for that area of the
graph, the rest of the errors remain between -0.2 and 0.2
meters. Further testing is needed to help adapt the model
to real-life factors and situations, particularly when turning
corners.
Editor: Trevor Johst
4 CONCLUSION
Author: Sameen Ahmad
In this lab, we explored search-based and sample-based
planning algorithms through BES, A*, and RRT*. We im-
plemented A* with a Euclidean distance heuristic onto our
autonomous race car, allowing us to generate the shortest
paths from the current pose of the robot to a goal pose.
Additionally, we integrated pure pursuit controls to allow
our car to precisely follow the predefined trajectory.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 26 2024

Slope Over Time

10 4

=10

Slape
1
[
(=]

-30

IIU lIS 2‘0 2‘5 3-‘(]
Time (s) +1.7140937e9
Fig. 16: Plot of slope vs time, with slope on the y axis. The

overall trend of the slope is relatively similar to the one in
simulation.

Our experimental evaluation in simulation and our
physical implementation demonstrate the efficiency of our
algorithm and controls methods. In simulation, our race car
precisely and consistently follows the trajectory in increas-
ingly complex layouts. Our physical implementation shows
minimal deviation from the path, revealing areas of future
improvement.

Looking forward, we plan to further implementing RRT*
with Dubin curves so our system is able to better account
for the kinematics of the car during travel. We hope this
will make for a more accurate and robust path planning
algorithm that advances our robot’s capabilities so it is able
to react appropriately to the complex environments of the
final challenge.

Editor: Trevor Johst
5 LESSONS LEARNED
5.1 Sameen Ahmad

Through this lab, I was able to explore the different types of
algorithms and learn more about each of their strengths and
shortcomings. I especially found the A* algorithm interest-
ing and enjoyed the opportunity to practice its implemen-
tation. It was really rewarding to see the robot follow the
predefined trajectories in real time. While testing, I learned
that the simulation does not account for dynamics intro-
duced by reality, so additional adjustments are necessary to
properly tune our system. I also realized the importance of
communication when integrating algorithms on the car and
brainstorming ideas to resolve issues.

5.2 Phillip Johnson

One lesson I learned is that tuning and testing algorithms
in simulation is far more efficient than in real life. Being
able to test parameters quickly is very important, and the
simulation allowed for that. However, I also learned that
even perfect controllers in simulation may fail in real life
and so perfecting quantities in simulation is not necessary
for implementing the code onto the robot as those quantities
will certainly need to change.

10

5.3 Trevor Johst

I enjoyed this lab because I was able to put a lot of time into
developing and thinking about algorithms to help the robot
do actual high level planning. The most valuable thing I
learned was probably the methods I used for optimizing the
RRT* algorithm. I have had experience with various forms
of path planning before, but I have never had to design them
for real time use on a robot. These actual implementations
teach a lot about real world considerations.

5.4 Maxwell Zetina-Jimenez

This lab was great because I enjoyed putting theory into
practice. After studying so many algorithms, it was nice
to actually see them applied in a real setting. However, I
learned that from theory to application, it is not a clear
and direct path. There are modifications to be made to fit
different problems, but nonetheless, it was great. I think I
also learned that even though everything could be working
in simulation, it does not mean it will immediately work
perfectly in real life. But in those moments of debugging,
it is best to have your teammates who can offer different
solutions, and that is a great advantage to teamwork.

5.5 Ellen Zhang

In this lab, I was most interested in the pure pursuit as it
was something I had never done before and I saw it as
a new challenge. Taking inspiration from the work of my
teammates, I got to incorporate new ideas and test them in
real life, and it was very exciting to put together, especially
when the racecar started working after much debugging.
I realize the importance of collaboration with the team, as
all of us have different ideas and it is important to bounce
them off of each other.

REFERENCES

[1] L. E. Dubins, “On curves of minimal length with a
constraint on average curvature, and with prescribed initial
and terminal positions and tangents,” American Journal of
Mathematics, vol. 79, no. 3, pp. 497-516, 1957. [Online]. Available:
http:/ /www.jstor.org/stable /2372560

[2] A. Nayak and S. Rathinam, “Heuristics and learning models for
dubins minmax traveling salesman problem,” Sensors, vol. 23, p.
6432, 07 2023.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846-894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

