ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

Lab 5 Report: Localization

Team 16: Sameen Ahmad, Phillip Johnson, Trevor Johst, Maxwell Zetina-Jimenez, Ellen Zhang

1 INTRODUCTION
Author: Sameen Ahmad
OCALIZATION is a complex challenge in robotics as
Lit often involves uncertainty, unknown environments,
and balancing computational resources. Nonetheless, it is a
fundamental capability that underlies many aspects of robot
functionality, enabling robots to perceive, understand, and
interact with their environment effectively.

The goal of this lab was to develop and implement an
algorithm that allows our autonomous race car to determine
its pose (orientation and position) relative to the environ-
ment. Specifically, our focus was integrating the Monte
Carlo Localization algorithm on our racecar by leveraging
LIDAR and odometry sensor data.

This directly builds upon our previous work of utilizing
LIDAR when we integrated our wall follower algorithm.
With this implementation, our next steps involve apply-
ing information about the robot’s location towards path
planning and in making decisions about future actions.
This lab fits into our broader goal of developing a robust
autonomous racecar capable of racing against other robots
on the Johnson Track.

The Monte Carlo Localization algorithm uses a collection
of "particles’ to estimate the pose of a robot. Particles, which
represent a potential state of the robot, are initialized at a
location. Through the motion model, the pose of the parti-
cles are updated to reflect possible future states. The robot
uses LIDAR to receive feedback on the environment. The
sensor model determines the likelihood that each particle
received the range sensor reading and assigns correspond-
ing weights. Particles are then resampled and eventually
converge on the expected pose of the robot.

We began by separately implementing and testing the
motion model and sensor model. Then, we integrated the
components to create our particle filter. We tested and
refined our implementations in the racecar simulation, be-
fore adapting our solution for our final integration on the
racecar.

Section Editor: Trevor Johst
2 TECHNICAL APPROACH
Author: Sameen Ahmad

Our development of the particle filter involved imple-
menting the motion model and sensor model independently
before integrating it virtually and physically on our race
car. The motion model relies on using odometry to generate
and continuously update potential poses of the robot, while
accounting for noise. Whenever LIDAR data is received,
the range values are down sampled and discretized to
improve computational efficiency. The sensor model then
loops through each particle and determines the likelihood
that it represents the state of the robot. Based on the particles
with the highest weight, the robot is able to update its es-
timated position. Particles are resampled and redistributed

in proportion to their weights, where those with a higher
probability appear in greater frequency than others. This
processes repeats causing the particles to converge on the
robot’s true position.

Section Editor: Trevor Johst

2.1 Motion Model

Author: Trevor Johst
Odometry data from the onboard Inertial Measurement
Unit (IMU) provides information on the instantaneous
change in pose at a rate of 50 Hz. An accumulation of small
errors over time will cause this odometry to deviate from
reality. By intentionally adding noise to our readings, the
motion model can replicate natural uncertainty in move-
ment of the robot. Then, the sensor model compares the
pose of each particle with feedback
The effect of this noise can be seen in Fig. 1, where
our potential locations for the robot spread out as we go
longer without an update. By itself the motion model would
not assist in localization, but other sensor data allows this
connection to occur. As the motion model causes particles
to drift, it encapsulates all potential poses of the robot. A
sensor model can then select which poses are most likely.

2.1.1
Formally, the goal of the motion model is to calculate the
robot’s pose, xj, as a function of the previous pose, z,_1,
and odometry readings, uy. This can be written as

Theory

Xk = f(Xk—1,Uk) (1)

Since the IMU only provides odometry in terms of in-
stantaneous velocity, it must be integrated before updating
position. It should be noted that by integrating a potentially
erroneous sensor reading, we are compounding the error
with any previously experienced error. The change between
readings can be expressed as

Axk = ukAt (2)

Additionally, these readings will be in the reference frame of
the robot. A rotation matrix must then be used to transform
into the world frame. A full update step can be represented
as

Xk = Xk—1 + RAxk 3)
Xk | xp_q cos (fx—1) —sin(fx—1) O [Axg
= |yp—1| + [sin(Or—1) cos(Or—1) O] [Ayx| (4
0.1 0 0 1 AGy,

If the readings from the odometry were perfect, (4)
would be sufficient to localize the robot given an initial pose.
However, the aforementioned accumulation of error means
this uncertainty must be mathematically represented. We

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

Start location

10 meters

Fig. 1. Particles spreading out as a robot travels along a set path.
The solid line represents the ground truth trajectory of the robot, and
the dots represent potential positions when accounting for noise. The
longer the robot goes without receiving sensor data, the less certain we
are about its position.

Source: [1]

decided to represent it through the addition of a Gaussian
distribution, as this is typically the profile found on IMUs
[2]. A Gaussian distribution is expressed as

1 1 /z—p 2
(3 (551)) ®

where o is the standard deviation and p is the mean. Let €
represent a specific sample from the distribution. We simply
add our noise to the pose, meaning we can generate it
with a p of 0. The values of o were determined through
experimentation to balance a proper spreading of particles
and sufficient convergence.

Choosing to apply our noise after the update step ef-
fectively introduces some random translation and rotation.
Had it been applied directly to the odometry, the rotation
matrix would compound the noise on the translations but
not on the angle. The noise could additionally be scaled by
At to ensure longer timesteps account for more possibility
of drift.

If we choose to view this noise as an input into our
motion model, we can finally represent the full model as

Xk = f(Xk—1, Uk, €) (6)

Xk = Xk—1 + Rug At + € ?)

2.1.2 ROS2 Implementation

As the robot travels, it continuously publishes odometry
data from the IMU. A listener on this topic then updates
every particle’s position and introduces a small amount of
noise, as outlined in Algorithm 1.

To complete our full update step with noise, we only
need to acquire At and €. The ROS2 clock allows us to keep
track of the time between loops and determine how much
has elapsed. Our noise vector is generated by sampling from
our Gaussian distribution using np.random.normal.

2

Every particle must then be looped over and updated
independently in a “for” loop. The only constant across all
particles will be At.

Once all of the particles are updated, the only remaining
step is to also update our estimated position. Since the
odometry itself represents our best possible guess for the
transformation of the robot, this update is executed without
noise.

Algorithm 1 Motion Model

At = prevTime — curTime
Ax = up X At
updated = []
for x5, in particles do
R = ROTATIONMATRIX(Z (1)
T = Tp—1 + R X Ax
e = GAUSSIAN(0)
T =Tk + €
updated < xj,
end for
prevTime = curTime
return updated

Section Editor: Maxwell Zetina-Jimenez

2.2 Sensor Model

Author: Maxwell Zetina-Jimenez

Sensor data can be incredibly useful to understand the

robot’s position relative to its environment. The goal of the

sensor model is to evaluate how probable a sensor reading

2y, from a particular pose xj, is at some discrete timestep k
from a given map m. In other words, we hope to find

p(zk|TE, m) 8)

The sensor model thus helps find which poses are most
likely to produce a sensor reading like the one that was mea-
sured. Probabilities are assigned to each pose with the goal
that better pose estimates are more likely to be resampled at
the next time step.

2.2.1 Theory

The probability of a sensor reading zj given a pose zj at
time k is dependent on the type of sensor. In this lab, a
LIDAR scanner was used for sensor readings. Thus, the
probability of a particular scan zj is the product of the
probabilities of each beam measurement z,(j) from the n
beams in that laser scan:

p(z|zr, m) = HP (Z](:)“rkam))
i—1

The calculation for a scan thus relies on the calculation
for a beam measurement. However, to account for the differ-
ent possible results a laser beam measurement could have,
this is determined from the probabilities of the following
cases:

1) prit (z,(j) |xg, m) : Detecting a known map landmark

2) Pshort (z,(:)\xk,m): Performing a short measure-
ment due to a close obstruction

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

3) DPmaz (z,(:) |k, m): Performing a large measurement
due to the laser not being returned
(4)) ; .
4) Prand |2, |Tk, m): Performing a random measure
ment due to an unexpected event

Since pp;; indicates a match with a known landmark, we
would like this probability to be the highest of the four. For
this reason, py;; is calculated with a Gaussian distribution
that is centered around the true distance d from the pose to
the landmark — if z,il) matches d, then this will be maximum:

_ 1 E =D’ g < 0 <
puit (0 = 3 VarA® P T 0 A S F
0 otherwise

(10)

Close obstructions in the second case are more likely to

be picked up by LIDAR when they are closer to the robot
(assuming they are uniformly distributed in the environ-
ment). Thus, we represent this case as a decreasing function:

.) NO) i
mmn@ﬁmmm){ﬂl‘ﬁ) og4f§d¢o
0 otherwise

(11)
Moreover, the third case represents a large measurement
near the maximum sensor reading. We would like to approx-
imate the difference between the high measured reading z ,(j)
and the maximum reading 2,,q, with the following model,

using a small factor e:

e

Finally, a random measurement (fourth case) should
have a small impact on the outcome due to its unlikelihood:

7
Zmaxr — € S Z]S;) S Zmaz

. (12)
otherwise

1 (4)
Prand (Z]g)|.’Ek, m) = { Zmaz k (13)

0 otherwise

To produce the final probability for a particular beam
measurement, these four probabilities are then joined in a
weighted average:

p (Zz(f) |z, m) = Qpit * Phit (z;(f)lxk, m)
+Qshort * Dshort (Z](gl) |xka m)
; (14)
((1) m)

+maz - Pmax 2, |Ika

+Qrand Prand (Z](j) |$ka m)

where aypit, Qshort, Qmaz, and Quang represent the re-
spective weights of each case (and sum to 1 so that
p(z,(cl) |z, m) forms a valid probability distribution).

With this calculated probability for a particular beam
measurement in a scan, it is possible to then compute
p(zk| K, m), the probability for the whole laser scan data for
a particular pose xj. This is done for all particles — potential
poses — to update the probabilities for each, which is used
to filter poor pose estimates and favor probable ones.

2.2.2 ROS2 Implementation

Following the theory behind the sensor model, the imple-
mentation was similar. A key difference was that calculating
all of the probabilities for a whole scan for each particle pose
is computationally expensive and time-consuming.

Rather than doing these operations with every exact
measurement z,(j), a discretized grid of possible combina-
tions of measured distance and actual distance (from pose
to object) was used to store precomputed probabilities for a
respective (z,(j), d) pair (that was discretized to be able to be
retrieved from the precomputed table). This allowed for val-
ues of Dhit, Pshorts Pmaz, ad Dyang to be quickly computed
(following their respective equations) from a lookup table
that represented the sensor model and thus more efficiently
assigns probability weights to poses.

Because of this discretization, however, € was set to 1 in
(12). Finally, because each column of the table corresponded
to a possible true distance d, each column was normalized
so that the probabilities along each column summed to 1,
thus forming a valid probability distribution.

With this table, the implementation followed the theory
to compute probabilities for potential poses with Algorithm
2, which grabs the probability for each (beam, true-distance)
pair from the lookup table and computes the product of all
pairs as in (8) to determine the probability for that particle
pose. The true distance comes from the simulated scan for
each particle (i.e. the simulated laser scan if the robot were
at that particle pose). It does this for every particle to get all
of the updated particle probabilities.

Finally, it normalizes the probabilities across all parti-
cles so that they sum to 1 and the probabilities of the
particle poses form a valid probability distribution. With a
probability assigned to each particle, the sensor model and
motion model can now be integrated together to produce a
hypothesis pose for the robot.

Algorithm 2 Sensor Model

probabilities = []

for sim scan in particle scans do
weight =1
for (z,(:), d) in (measured scan, sim scan) do

weight = weight * LOOKUPTABLE(,Z,(;)7 d)

end for
probabilities < weight

end for

return probabilities / SUM(probabilities)

Section Editor: Phillip Johnson

2.3 Integration

Author: Ellen Zhang

The motion model and sensor model play key roles in

the Monte Carlo Localization algorithm, known as particle

filtering. In each iteration of the algorithm, the estimated

pose and orientation of the robot are updated as it moves
and senses its environment, the Stata basement.

2.3.1 Theory

To start with, several particles are initialized randomly
around the robot’s starting pose. Each of these particles

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

represents a guess as to where the robot is at that particular
time. When the robot moves around in real life, the program
receives real-time odometry and LIDAR information. The
particle filtering algorithm goes through three steps:

1) Prediction Starting from a set of particles at time k—
1, pass in the odometry information to the motion
model to obtain a new set of particles at time k.

2) Update Reassign likelihoods to each new particle
using the sensor model.

3) Resampling Resample the particles with probability
proportional to their likelihood, which helps con-
verge the particles towards the robot’s true position.

These three steps are repeated as the robot moves and re-
ceives new data, thus the particles are continuously updated
to track the movement; Fig. 2 shows the overall structure of
the algorithm.

Odometry

Data H Motion Model
LIDAR Data |—>| Sensor Model

Fig. 2. Diagram of the flow of Monte Carlo Localization Starting with
the initial pose, the program receives odometry and LIDAR data, which it
passes into the motion and sensor model respectively. The particles are
updated and used to calculate the weighted average, which is published
at a rate of 20 Hz.

Initial Pose Updated Particles H Average Pose

2.3.2 ROS2 Implementation

In ROS2, the particle filter works through a system of sub-
scribers and publishers and depends on chosen parameters.
Upon program initialization, around 200 particles are ini-
tialized around the robot’s starting pose, which is manually
set using pose estimate in RVIZ. We chose 200 particles be-
cause this number achieves a good balance between efficient
runtime and having enough particles to work with.

The program subscribes to odometry and LIDAR mes-
sages on the car. Every time an odometry message is re-
ceived, the motion model updates the particle movements.
Every time a LIDAR message is received, the LIDAR data
is first downsampled from 1081 to 99 rays to avoid redun-
dancy and improve runtime. The downsampled observation
is passed into the sensor model to resample the particles
according to weights.

The weighted average pose is continuously updated as
well. The program publishes the weighted average pose
at a frequency of 20 Hz, to ensure real-time performance.
Given the array of particles, the average x and y values are

calculated as
n

(,9) = sz‘ (@i, yi)- (15)
i=1
The average 6 must be calculated using circular mean,
) i1 Pi - sind;
§— tan—! (=i Pisinbiy 16)
> pi-cosb;

Over time, we have seen that the weighted average pose
consistently tracks the true location of the car.
Section Editor: Trevor Johst

3 EXPERIMENTAL EVALUATION
Author: Phillip Johnson

The integration of the motion and sensor models has
generated an efficient and robust algorithm for global local-
ization of the robot. In this section, the integration of the
models will be qualitatively and quantitatively analyzed to
discuss the performance and potential improvements of the
integrated model.

To evaluate the effectiveness and robustness of the
model, tests were conducted on accuracy and robustness.
For the purpose of this lab, accuracy will be defined on the
distance between the estimated position and actual position
where position is measured relative to the map origin.
Robustness is defined as the ability for a high accuracy to be
reached quickly. Convergence and runtime will be evaluated
to ensure that the model reaches high accuracy with an
ability to update its position estimate at speeds of at least
20 Hz.

Section Editor: Ellen Zhang

3.1 Simulation

Author: Phillip Johnson

Although real-world implementation often requires dif-

ferent parameters than the simulation environment, testing

in the simulation will ensure that our algorithms work

under best-case conditions while ensuring the safety of the
racecar.

3.1.1 Accuracy Evaluation

One luxury in simulation, which we do not have in the
real world, is the ability to access the robot’s position at
all times using a transform lookup between the /map and
/base_link frames. Leveraging this, an error plot (shown
in Fig. 3) can be created between the estimated pose and the
actual pose relative to the map origin. To calculate the error
we used

Estimated — Actual

E =100
rror% * Actual

17)

Error Between Estimated Pose and True Pose (Velocity=3)

—— X Error
Y Error
—— Theta Error

754
504

25

—50

—-75 4

-100

T T T T T
o] 50 100 150 200 250 300

Fig. 3. Error percentage between actual pose and estimated pose.
Over time, the X and Y errors remain relatively consistent at around
0. For 0, the peak occurs when the car turns a corner, but it quickly
converges back to the true 6.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

As seen in Fig. 3, the X (vertical) and Y (horizontal) errors
remain extremely low even at a velocity of 3 m/s. The 0
(orientation) error peaks quite high when the car is turning
around a corner, but it eventually converges back toward
zZero.

Because the error is extremely low in straight hallways
and converges back toward zero after spiking, it can be
concluded that the localization is robust enough to use in
the real-world.

3.1.2 Runtime Evaluation

The generated laser scan data from the simulation is roughly
10% the size of the LIDAR laser scan the car would measure
in real life. Because of this, it is imperative that the odom-
etry and laser scan callbacks can perform computations at
speeds well above 20 Hz. To test this, a timer was set at
the beginning of the callback function and ended once the
callback was finished. The results were plotted as can be
seen below.

Run Times for Different Functions [Simulation]

0.10 1 — sensor Model
Motion Model

0.08

0.06

Run Time (s)

0.04 4

0.02 4§

Wi st AR s st AT

T T T T T T T
o] 100 200 300 400 500 600
Number of Function Call

Fig. 4. Runtime of callback functions in simulation. The x-axis is the
number of function calls and is plotted against the runtime of the function
in the y-axis. Note that both the sensor and motion model lie below 0.05
seconds, meaning the program runs efficiently.

To reach the 20 Hz threshold, both models should run in
less than 0.05 seconds. As shown Fig. 4, this was achieved
in simulation. It is worth noting, however, that computa-
tions are largely computer-based and may not represent
performance on the robot. The analysis is useful, however,
to understand which parts of the code are bottlenecks in
computation.

Section Editor: Ellen Zhang

3.2 Physical Implementation
Author: Phillip Johnson
When testing the car in real life, we perform an accuracy
evaluation of the algorithm’s correctness. Then, we evaluate
the efficiency of the algorithm when performing in real time.

3.2.1 Accuracy Evaluation

Without the luxury of knowing the robot’s position at all
times, some creative work must be done to ensure model
accuracy. To test the accuracy, three tests were performed:

5

1) Accuracy around the initial position: since the initial
position is known, the estimated position can be
easily tested against the initial position.

2) Accuracy along a known distance: knowing the dis-
tance and initial position should ensure that the bot
ends up at a known location which the estimation
can be tested against.

3) Qualitative testing: Viewing the robot’s position in
simulation and comparing it to the real-world posi-
tion qualitatively can ensure that no major estima-
tion errors are committed.

In Fig. 5, the results of the known initial test can be seen.

Difference Between Initial Pose and Estimated Pose

0.10

0.05 4

0.00 4

Difference (m)

—0.05 1

—— X Difference
Y Difference
—— Theta Difference

—0.10 1

\\W\N"V"_J

T T
o 10 20 30 40 50
Initial Pose Convergence Count

Fig. 5. Difference between initial and estimated pose. When the car
is initialized, the algorithm quickly locates its estimated position in the
map and converges accurately.

From this test, it is clear that the bot can confidently
converge to the initial pose with accuracy of around 0.01
m.

For the known distance test, the robot was set up in a
hallway that runs along the -x direction and was moved
approximately 3.11 meters in the -x direction.

The initial position was X =-8.27m, Y =26.41 m, and 0 =
3.097 rad, and the final position was X = -11.65 m, Y = 26.53
m, and 6 = -3.13 rad. This test showed that the robot was
able to track itself confidently along a straight line. Future
testing will involve tracking around corners and non-linear
motion.

Finally, conducting qualitative analysis showed that the
robot’s movement in real life was consistent with the es-
timated position being published in RViZ. Through these
three tests, there is strong confidence in the bot’s ability to
localize with strong accuracy.

3.2.2 Runtime Evaluation

Without quick localization, the bot will be unable to run
at effective racing speeds. Thus, the goal was for the bot
to be able to converge on a point rapidly and publish the
odometry vector at a minimum speed of 20 Hz when run in
real life.

In Fig. 6, the runtime of both of the callback functions
can be observed as the robot drove around.

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

Run Times for Different Functions [Simulation]

80 4

704

60 4

—— Sensor Model
Motion Model

50 4

Run Time (Hz)

40

30 4

204

T T T T T T T
o 250 500 750 1000 1250 1500 1750

Number of Function Calls

Fig. 6. Runtime of odometry and laser scan callbacks. The x-axis
is the number of function calls and is plotted against the runtime of the
function in the y-axis in hertz. Note that both the sensor and motion
model lie above 20 Hz, meaning the program runs efficiently.

As shown in Fig. 6, the sensor model and motion model
are both able to consistently update odometry data at speeds
above 20 Hz. Additionally, Fig. 7 shows the convergence rate
on the initial position.

Convergence Time for Final Difference of [1e-4,0.1,1e-4]

—— X Difference
Y Difference

175 A

150

125

100

754

50

Number of Particles Above Epsilon

25

T T T
0.2 0.3 0.4 0.5 0.6 0.7
Time [s] (25hz update rate)

Fig. 7. Convergence on the initial pose. At a 25 Hz update rate, the
number of particles that are far away from the robot’s true position rapidly
falls to nearly 0, indicating a robust convergence of the particle filter.

In Fig. 7, it can be observed that the number of particles
outside of the epsilon value (0.1 m in this case) decreases
rapidly through each function call. An extremely accurate
odometry vector can be found in less than a second, but
a sufficiently accurate vector can be found in under 0.5
seconds. It is worth noting that this convergence rate is
significantly faster once the robot has initialized as less
sampling will be required.

Section Editor: Ellen Zhang
4 CONCLUSION
Author: Ellen Zhang

In this lab, we implemented the Monte Carlo Localiza-

tion algorithm on our autonomous racecar, utilizing sen-

6

sor data from LIDAR and odometry to estimate the car’s
pose relative to its environment. Through the design and
optimization of the motion model and sensor model, we
successfully created a robust algorithm capable of accurate
localization.

Our experimental evaluation in both simulation and
physical implementation showcases the effectiveness and
efficiency of our approach. In simulation, we achieved low
error rates even at high velocities, demonstrating the robust-
ness of our localization system. Additionally, our algorithm
meets real-time requirements, crucial for practical deploy-
ment on the racecar, especially in the next lab where we will
work on path planning.

Looking forward, the successful integration of the Monte
Carlo Localization algorithm lays the foundation for further
development of our autonomous racecar, paving the way
for enhancing our robot’s capabilities in navigation and
decision-making on the Johnson Track.

Section Editor: Sameen Ahmad

5 LESSONS LEARNED
5.1 Sameen Ahmad

This lab allowed me to familiarize myself with localization
algorithms. I was also exposed to advanced programming
techniques including multi-threading and profiling during
its integration. This lab, however, was the most challeng-
ing for me in understanding the Monte Carlo localization
algorithm and its implementation as a whole. Although,
through debugging I was able to get a better grasp of the
material. I also recognized the importance of communica-
tion in maintaining the team’s momentum. I learned that I
shouldn’t hesitate to reach out to my team members about
my confusions early on, instead of struggling to understand
it on my own.

5.2 Phillip Johnson

This lab introduced me to the difficulty of localization and
how it can be done effectively. The first lesson that I learned
is that noise is tough to deal with. Without a known initial
position, localization is near-impossible. Secondly, I learned
that collaboration is essential. Everyone on this team con-
tributed to clearing up muddy topics, and the collaboration
that we had helped me both finish my tasks and understand
what I was doing.

5.3 Trevor Johst

This lab taught me the concept of localization. Addition-
ally, it taught me that random sampling and Monte Carlo
approaches can be extremely powerful for solving a com-
plicated issue in a short amount of time. Collaboration
is extremely important when working under tight time
constraints, and ensuring efficient use of time is often the
biggest challenge. Everyone communicating about what
issues they are running into, and getting help when needed
only makes everything work more effectively.

5.4 Maxwell Zetina-Jimenez

This lab was great to learn more about localization in
robotics. A big takeaway for me was the benefit that noise

ROBOTICS: SCIENCE AND SYSTEMS, APRIL 10 2024

can have on calculating predictions. I also enjoyed imple-
menting and seeing how a probabilistic algorithm proved
to be effective. Going from theory to implementation was a
big help in understand the probabilistic models, and I think
this was a good technical skill I learned. I also learned that
communication plays a big role in collaborative tasks. Being
responsive and transparent with roadblocks, needing help,
and progress allows for cohesiveness in the team.

5.5 Ellen Zhang

This lab provided me with valuable insights about Monte
Carlo Localization, especially in practice when implement-
ing the algorithm on the racecar in real life. Collaboration
within the team was essential for understanding and over-
coming challenges encountered during the implementation
process. This experience helped me realize the importance of
communicating tasks ahead of time, and working together
to solve problems.

REFERENCES

[1] D. Fox, W. Burgard, F Dellaert, and S. Thrun,
“Monte carlo localization: Efficient position estimation for
mobile robots,” in AAAI/IAAI, 1999. [Online]. Available:
https:/ /api.semanticscholar.org/CorpuslD:2272361

[2] N. K., S. A. G,,]. Mathew, M. Sarpotdar, A. Suresh, A. Prakash,
M. Safonova, and]J. Murthy, “Noise modeling and analysis of
an imu-based attitude sensor: Improvement of performance by
filtering and sensor fusion,” SPIE Proceedings, Jul 2016.

