
ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 1

Final Challenge Report
Team 16: Sameen Ahmad, Phillip Johnson, Trevor Johst, Maxwell Zetina-Jimenez, Ellen Zhang

Editor: Trevor Johst

1 INTRODUCTION

Author: Sameen Ahmad

THE final challenge serves as a platform to showcase the
culmination of our team’s learning progress over the

semester. Through the competition, we were able to apply
our knowledge in computer vision, localization, and path
planning to enable our autonomous race car to complete
different tracks. The final challenge consists of two compo-
nents: the Final Race, also known as Mario Circuit, and City
Driving, or Luigi’s Mansion. In the Final Race, teams are ex-
pected to program their cars to race along the Johnson Track
while staying within one’s lane and avoiding collisions with
neighboring cars. In City Driving, teams are expected to
navigate a model city environment while abiding by traffic
laws such as staying on the right side of the lane, yielding to
traffic lights and stop lights, and avoiding pedestrians. The
robot must follow a path and travel towards certain points
to collect shells. For each competition, penalties are assigned
for lane breaches or traffic infractions.

For the Final Race, we utilized computer vision through
a Probabilistic Hough Transform and PD control. The Prob-
abilistic Hough Transform allows one to find line segments
in a binary image efficiently, which we applied for line
detection of the track’s lanes. Then, we cropped the image
to calculate the centroid of the robot’s current lane and
implement PD control to follow the point.

For City Driving, we used a state machine to determine
the car’s actions in different events implemented in the
YASMIN package. We traverse a trajectory based on the
selected points that was offset from the central lane. Then,
we utilized a pure pursuit controller at low speeds to follow
the trajectory, while stopping at the shell locations that were
published. However, our car still struggles to stay within
its lane while turning. We employed machine learning to
create a stopping controller for stop signs and traffic lights,
but were unable to test it sufficiently on our car.

If we had more time we would tune our controller to
allow sharper turns, as well as reversing for turn-arounds.
Also, we would integrate the stopping controller so our car
is able to respond appropriately to traffic lights and stop
signs. Over the course of the semester, our team was able
to significantly develop our skills in various critical areas of
robotics and look forward to applying our knowledge in the
future.

2 TECHNICAL APPROACH

Author: Maxwell Zetina-Jimenez
The first part of the Final Challenge tasked us with

staying in a lane on Johnson track and completing a lap
at a maximum speed of 4 meters per second. We made use

of skills from previous labs such as computer vision and
controls. This challenge involved using edge detection and
Hough Transforms to detect lanes, as well as homography
to follow a real world point in the lane. Furthermore, we
explored the advantages and disadvantages of pure pursuit
and PD control, in this case ultimately having a solution
with PD control where our error was the angle between the
robot’s heading and the middle of the lane. Our robot was
able to successfully complete a lap around the track at 4
meters per second with a total time of 53 seconds.

The second part of the Final Challenge was to navigate
Stata basement, visiting three unknown locations while
staying in the right lane and adhering to traffic rules. Our
team leveraged the work done from past labs but also
explored different solutions. We employed our pure pursuit
controller from the path planning lab to execute planned
trajectories through both lanes. However, we also explored
using a PD controller and a Stanley controller. We organized
logic using a state machine to transition between tasks of
reaching a goal, going to the next goal, and coming back to
the starting location. These transitions required more com-
plex dynamics like three-point turns to turn around, which
we attempted to implement with Reeds-Shepps curves.
Moreover, we experimented with the You Only Look Once
(YOLO) machine learning model to detect stop signs and
traffic lights, implementing controllers to adhere to traffic
rules. Our team was able to visit all three goal points and
return to the starting point but did so with traffic infractions.

2.1 Track Lane Follower
Author: Maxwell Zetina-Jimenez

Completing a lap around the Johnson Track with our
robot involved leveraging computer vision and controls to
stay within a specific lane the whole lap. The robot’s camera
image was cropped and processed for line detection. The
closest lines to the center of the image were considered
the lane lines, and the midpoint between them was the
reference point for our PD controller to follow. We were
able to complete a full lap around the track in 53 seconds
at a constant speed of 4 meters per second.

2.1.1 Lane Detection
Author: Maxwell Zetina-Jimenez

The first task in completing a lap around the Johnson
Track was detecting the lane so that the robot could follow
it with a controller. Lane detection involved first grabbing
all of the lines in the image of the car, which was done
using the Python cv2 package. We did edge detection using
cv2.Canny and a color threshold to filter out edges that
were not white track lanes. We then took that edge-detection



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 2

image and used a Hough Transform (cv2.HoughLinesP)
to get the lines in the image. An example result of this
can be seen in Fig. 1, where the starting line of the track
is processed for line detection.

(a) Johnson Track (b) Track line detection

Fig. 1: Line detection on the Johnson Track. Edge detection
and a Hough Transform allowed for accurate line detection,
which helped identify lanes.

However, because there are multiple lanes on the track,
it was not enough to simply do line detection to determine a
lane and follow it. To solve this problem and have our image
focus solely on the current lane the robot was in, we cropped
the image top and bottom to only look at a thin sliver
of the image, namely the section of the current lane that
was slightly ahead. As seen in Fig. 2, this cropping strategy
filtered out lines that were far ahead and insignificant to the
current position of the robot, as well as lines that were part
of the robot’s LiDAR sensor that appeared in the image.

Fig. 2: A cropped image of the track. Ignoring the top and
bottom of the image allowed the robot to focus on the lines
of the correct lane and thus prevent lane infractions.

The reason for getting the lines of the lane was to be able
to develop a controller that could stay in the lane and follow
its curve. Thus, a reference point to follow was needed. As
seen in Fig. 3, we used the middle of the lane as the reference
point, which was computed by getting the midpoint pixel
between the nearest left and right lines with respect to the
vertical center line of the cropped image. This pixel was then
passed on to our homography tansformer to determine a
real world point for the robot to follow and try to be aligned
with.

Fig. 3: Lanes detected with centroid labeled. After line
detection and cropping, our controller followed the center
of the lane to reduce error and prevent leaving the lane.

The only issue was that sometimes there would be
horizontal lines on the track that crossed into the lane and
were considered a closest lane line. This misinterpretation
would skew the position of the midpoint, which resulted in
the robot following a misplaced centroid that would lead
it outside of the lane. To overcome this issue, we tried a
different cropping technique to segment the horizontal lines
into small chunks and then filter with a length threshold
as seen in Fig. 4. However, this did not work all the time
on curves, as the vertical stripping would interfere with
the actual lane line and segment it. Because of this failure,
we ultimately implemented a filter based on line slope that
ignored lines with low slope — horizontal lines that were
not part of the lane barriers.

(a) Vertical stripping of lane (b) Centroid after vertical
stripping

Fig. 4: Vertical stripping before image processing. Seg-
menting horizontal lines allowed minimizing their influence
on the position of the centroid (blue star) but also split the
real vertical lanes on curves.

2.1.2 Lane Following
Author: Phillip Johnson

The initial approach to lane following was to use a pure
pursuit controller that projected the detected centroid of a
lane onto a lookahead circle that was a set distance ahead,
similar to what is shown in Fig. 5a. The issue that we
found with this is that balancing the speed to lookahead
ratio proved to be incredibly difficult at high speeds. For
example, a high lookahead is desirable on straight-line
trajectories, but the curves require a lookahead that is much
lower. However, one that is too low will overturn, and one
that is too high will not follow the lane.

We attempted to fix this by projecting the slope of the
lane onto the centroid and perform path following similar
to what we did in lab 6 - a representation of this is shown in
Fig. 5b. However, the slope of the line proved to be difficult
to calculate due to the convergence of the lanes at a far
vanishing point, as shown in Fig. 6

As a result, we decided to use a Proportional-Derivative
(PD) controller. This controller works by actively minimiz-
ing the calculated error. The error equation that we used
is shown in (1). It functions by taking the y (horizontal)
distance from the centroid, projecting it out by 1.0 meter
(this ensures that the angle is reasonable and standardizes
the x distance of the centroid), and calculating the scaled
angle difference.

The proportional control works to actively minimize that
error by applying a control in the direction of the error
(i.e. if the centroid is to the right of the car, proportional
control will turn the car to the right). Derivative control



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 3

(a) Point based pure pursuit (b) Path based pure pursuit

Fig. 5: Two different versions of pure pursuit. Point based
pure pursuit would calculate the steering angle to the next
point on the trajectory. Path based pure pursuit would cal-
culate the steering angle to a point a set lookahead distance
along the path.

Fig. 6: Straight parallel lines converging to a distant van-
ishing point. For our track follower, the parallel lanes still
converge at a distant point making it difficult to quantify
their centroid line.

will calculate the change in error based on the applied
proportional control. When added to proportional control,
this will damp the system as, if the proportional control
applies a turning angle that increases error, the derivative
control will correct that error. The equations and gains we
used for proportional control can be seen in (2) and (3),
respectively.

Finally, we decided that implementing integral control
was unnecessary as the overshoot did not seem to be an
issue. Any issue we ran into with the controller was almost
always due to incorrect centroid calculations, and the added
complexity of tuning integral gains was deemed unneces-
sary.

e =
1

v
· arctan2 (yerror) (1)

P = Kp · e (2)

D =
Kp

4.0
(eprev − e) · dt (3)

2.2 City Driving
Author: Ellen Zhang

The goal of Luigi’s city-driving challenge is to drive
around the Stata Basement and pick up three randomly
placed shells. To do this, the racecar must operate localiza-
tion to know where it is, use a controller that can follow the
trajectory reliably, and be able to detect stop lights and stop
signs and stop in time. We realized that there is a predictable
flow of control from one state to another; to integrate this
into our code, we developed a state machine utilizing the
YASMIN python package for ROS2 as our infrastructure.

2.2.1 Operational Logic
Author: Ellen Zhang

Our operational logic for the state machine is explained
below, and also shown in Fig. 7.

1) Get shell locations: By subscribing to the map and
listening for clicked points, we store the locations
of the three shells as well as our initial pose. After
receiving all three shells, we move on to projecting
our first shell’s location.

2) Project shell to the desired lane: Given our car’s
current position, we know which lane it is by calcu-
lating the angle with respect to the central trajectory;
if the angle formed is clockwise, it is on the right
lane. We then project the shell location onto the
desired lane to get the goal we wish to reach. If this
projection is behind us, we must conduct a U-turn
to switch lanes. Otherwise, we may proceed to plan
the trajectory.

3) Turn Around: If the projected shell lies behind us,
we must turn around and switch lanes. After doing
so, we transition back to projecting the shell, but this
time, we know that the projection will be in front of
us.

4) Offset line trajectory: Now that we have the car’s
current position and our goal, as well as which lane
we wish to be in, we simply find the portion of
the lane we wish to follow. We precomputed the
right and left lane trajectories and simply load them
into our code, and calculate which portion is most
relevant. Then, we navigate it.

5) Navigation: We now use our car’s controller pro-
gram to navigate the desired trajectory until we
reach the goal. Once we reach the goal, we wait for
5 seconds to pick up the shell, before going to the
next shell location. We will go more into this portion
in the next section, trajectory following, because we
had three options for the control.

The entire time, the stop light and stop sign detectors run
in the background; if they detect the need to stop, they issue
a higher-level drive command that overrides the current
one. Similar logic follows for the safety controller program,
which runs in the background and will issue an overriding
stop command if a pedestrian walks in front of the car.

The overall state machine logic is sound and works well
in simulation; Fig. 8 shows the racecar following both right

Fig. 7: Flow of the State Machine After receiving the shell
locations, the robot then plans along the relevant lane and
follows it to the projected goal, and then waits for 7 seconds
before moving on to the next goal.



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 4

and left lane trajectories in simulation, from one shell to the
next.

(a) Right lane trajectory (b) Left lane trajectory

Fig. 8: Racecar following right and left lane trajectory in
simulation, show in red. The right lane trajectory goes from
the start to first shell, while the left lane trajectory goes from
the second shell to the third shell.

2.2.2 Trajectory Following
Author: Trevor Johst

In order to traverse the path between different objective
points as outlined by the state machine, we had to have a
robust controller. Throughout the testing phase, we tried
variations of three different controllers: PD, Stanley, and
pure pursuit. We found that for our offset lane trajectories,
PD was difficult to tune on both corners and straight sec-
tions. The Stanley controller struggled on any portions of
the trajectory that were not dynamically feasible. Pure pur-
suit required low speeds, and had to be balanced between
oscillations and cutting corners.

For the PD controller, multiple error terms were tested.
An error term as outlined in the track follower section
was attempted, but proved to not work by itself. The most
effective error term was a combination of both the cross-
track error and the angle to a future point at a set lookahead
distance. The errors were combined as

e = α · ecross track + (1− α) · eangle (4)

where α was a parameter between 0 and 1. We found that a
value of 0.8 worked best. In the end we did not end up using
the PD controller because some areas of the lane trajectory
would cause unrecoverable deviations.

The Stanley controller was implemented as outlined
in [1]. Without going into extreme detail about how the
controller operates, the final steering angle is calculated as

δ = (ψ − ψss) + arctan

(
ke

ksoft + v

)
+ kyaw(rmeas − rtraj) + ksteer(δcur − δprev) (5)

where ψ is the current angle deviation from the trajectory,
ψss is a turn offset based on the momentum of the vehicle,
e is the cross track error, v is the velocity, r is the yaw
rate, and δ is the steering angle. All k values are constants
that help adjust various sensitivities. One important note is
that the last term is not possible to calculate exactly due to
limitations on the car. The specified δ terms are supposed
to be measured from the vehicle, but as a sensor does not
exist to measure this we instead assume instant steering.
This assumption definitely impacted tuning and made this
term less reliable.

The original intention was to use the Stanley controller
with our previously developed RRT* algorithm using both
Dubins and Reeds-Shepps curves as shown in Fig. 9. As the
Stanley controller assumes all angles along the trajectory are
traversable, this would be an important step in operating the
controller. In reality, we did not have time to test the state
machine with manual path planning between states. This
meant we were had to use fixed, pre-determined lane trajec-
tories for travel. This simplified the state machine, but had
the downside of making our trajectories not dynamically
feasible.

Due to this, we finally settled on using the pure pursuit
controller previously outlined in lab 6. This was a trade off
as it still ended up cutting corners at times, but allowed
us to test the full state machine before the deadline. To
reduce the number of lane infractions, we lowered the
speed of the controller and got the lookahead as low as
possible. The result could have been further improved, if
we updated the center lane trajectory that was provided
to more accurately represent reality. There were a couple
locations where the provided center lane trajectory would
cut corners, and combined with pure pursuit it would often
deviate significantly from the lane.

2.2.3 Traffic Abidance
Author: Sameen Ahmad

We used machine learning to detect stop signs and traffic
lights to know when to stop appropriately. Unfortunately,
we were unable to integrate it onto the car, but were able
to test the algorithm in isolation. We were provided with a
stop sign detector that used YOLOv5, a multi object detection
algorithm. It works by processing the image with computer
vision and displaying a bounding box around the desired
object. We used a similar YOLOv5 model that was trained
on a data set of traffic lights to implement our traffic light
controller.

Since the location of the stoplights were predetermined,
we found their coordinate locations on the map and con-
stantly calculated the minimum distance of the robot’s pose
to each stoplights. If a traffic light was detected to be within
a 2.5 meter range from the car, the robot would begin to
slow down. We chose to reduce the speed of the car when
within a certain radius from any traffic light because the

Fig. 9: A Reeds-Shepp curve between two car poses. The
green pose is is the initial pose, blue is an intermediate pose,
and red is the final pose. The initial and final poses point
in opposite directions and reverse on the first and third
segment.
Source: [2]



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 5

machine learning algorithm was able to detect traffic lights
more consistently at slower speeds.

Once a traffic light was detected, we cropped the image
of the traffic light to isolate the upper third portion contain-
ing the red light. Then, we performed color segmentation
to detect when the light was on. If a light was detected it
would start a buffer timer guaranteeing a stop for at least
two seconds. If the light was detected again it would reset
the buffer timer. This helped alleviate the poor detection by
the model.

Additionally, we relied on our safety controller from
previous labs to ensure that the car yielded when it came
across pedestrians or other obstacles. When the car detected
an object within a 0.5 meters radius through LIDAR, it
would send a drive command to stop. We derived a function
that took into account the car’s current speed to determine
when to begin sending the stopping commands so that it’d
stop at the desired distance from obstacles.

3 EXPERIMENTAL EVALUATION

Author: Phillip Johnson
Evaluation is essential to controller success. We lever-

aged quantitative analysis and qualitative observations to
ensure our controllers and stop sign detectors were ade-
quate.

3.1 Track Lane Follower
Author: Phillip Johnson

We used both quantitative and qualitative evaluations
when determining the functionality of the track lane fol-
lower. To initially tune the proportional gain, we would
increase the gain until the car oscillated around a center
line (we used lane 4 as there is a gray line directly down the
center). Then, we would add derivative control and begin at
a kd value of kp/6. To quantitatively determine the control
attitude that we wanted, we would use statistics as shown
in Fig. 10a. The main response that we wanted to see is that
the proportional control increases when error increases and
the derivative control damps the proportional control. This
will lead to the response shown in Fig. 10b. The control
will always be higher than the error so that the car can
adjust quickly. More importantly, it will be in the direction of
error which is what allows that error term to stay relatively
constant.

(a) Control vs. error plot (b) PD control with error

Fig. 10: Performance metrics for the track follower. We
can see that the proportional term handles direct error
correction, while the error term handles overcompensation
by the proportional term.

The error stays around +0.01. This is because our camera
is to the left of the car’s mid-line. Originally, this error
was much higher, but we adjusted for the pixel offset by
putting a tape measure in front of the car’s mid-line and
adjusting the offset until the mid-line pixel was above the
tape measure. The before and after of this can be seen in
Fig. 11.

(a) Without offset (b) With offset

Fig. 11: A constant offset applied to the centroid. The blue
circle is the centroid between the red lane lines. Due to
misalignment with our ZED camera, a constant offset had to
be introduced to ensure the center of the line was accurate
to reality.

Additionally, the car is extremely left-turn biased at
higher speeds. To account for this, we apply a constant
turning angle offset of -0.045 at speed 4.0, and this offset
decreases somewhat linearly for lower speeds. We deter-
mined this offset by publishing a constant speed in lane 4
and adjusting the offset until the car was able to drive in a
straight-line for around 25m of distance.

Finally, we qualitatively measured performance by de-
termining types of errors. For example, a sharp turn in a
straight lane means that there is likely an error of calculating
the centroid wrong which could be due to tracking incorrect
lines. Oscillations likely mean that the derivative constant is
too low. Understanding the qualitative differences between
runs allowed us to correct our gains and fix lane detection
issues.

3.2 City Driving Trajectory Follower
Author: Trevor Johst

Due to time constraints, we were not able to acquire any
quantitative metrics of our City Driving trajectory solution
in real life. In Fig. 12, we show the simulation time vs. error
of the car from trajectory as it navigates using pure pursuit,
and we see that it maintains a relatively low error, never
deviating above 0.20 meters from trajectory. If we had time
to collect real life data, some useful metrics to record would
be deviation from the intended trajectory, stopping distance
at traffic stops, and some form of speed or time metric.

We can qualitatively assess the performance based on
some of the successful runs that we did have. A common
theme among runs was a large number of lane infractions.
This was due to the aforementioned mismatch between the
real lane and the desired trajectory, as well as the use of pure
pursuit as our controller.

For the runs we had that were successful, times ranged
from low two minutes to three minutes. This was in large
part due to our low travel speed. A more robust controller
or a more traversable trajectory would have likely allowed
us to increase the speed and thus decrease the time.



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 6

Fig. 12: Error of racecar from planned trajectory in simu-
lation. The car follows the trajectory closely in simulation,
never deviating above 0.20 meters. Unfortunately, in real life
we did fully troubleshoot, so the car would frequently cross
lanes.

3.3 Stop Sign and Stoplight Detector
Author: Sameen Ahmad

To evaluate the performance of our stop sign and stop-
light detector, we published the bounding box that was
drawn around each detected object as shown in Fig. 13.
We tested the algorithm with stop signs and traffic lights
at various locations along the map, and qualitatively found
consistent results of detection at the appropriate location in
front of the devices. We also utilized a logger to track the
state of each detector, letting us know when it is able to see
either a traffic light or stop sign.

We found that in implementation, the ZED 2 camera
would require a large amount of compute while running.
This would not only slow down our other nodes, but would
also slow down the detection. To actually implement real
time detection of both stop signs and stop lights would
require either logic to slow down when near them, or
significant optimization for many components of the robot.

(a) Stop sign detection (b) Traffic light detection

Fig. 13: A stop sign and traffic light being detected with
ML. The bounding box around the traffic light is then used
to color segment for stop detection.

4 CONCLUSION

Author: Sameen Ahmad
For the final challenge, we applied computer vision, path

planning, and localization to develop algorithms that were
suitable for the Final Race and Circuit Driving competi-
tions. We implemented a Probabilistic Hough Transform
and PD control so that our car was capable of detecting
the lane it was in while racing on the Johnson track. In City
Driving, we projected published goal points to a trajectory
that was offset from the central line and followed it using
pure pursuit. We also utilized machine learning to respond

appropriately to stop signs and traffic lights. Additionally,
we explored the Stanley Controller and Reeds-Shepps curve
to handle reversing. These components were integrated
through a state machine that switched between various
states as prompted by external events.

Our experimental evaluation in simulation and our
physical implementation demonstrate the feasibility of our
algorithms for either challenge. In simulation, our race
car precisely and consistently generates and follows the
trajectory. Our physical implementation shows deviation
from expectation, especially through lane infractions and
struggling to turn, revealing areas for future improvement.

Overall, the final challenge offered a valuable opportu-
nity to display the culmination of our prowess in various
areas essential to robotics. We look forward to building upon
the foundations that were laid through this course as we
apply our leanings through our academic and professional
careers.

5 LESSONS LEARNED

5.1 Sameen Ahmad
I learned the importance of version control while col-
laborating. We ran into several issues where changes in
our program were unexpectedly not saved and reverted
to earlier versions that possessed errors. This caused our
team to spend significant time debugging algorithms that
performed well in earlier labs. I was also exposed to how to
apply machine learning for object detection.

5.2 Phillip Johnson
One thing I learned is that simple controllers are often better
than ones which require intense complexity. I feel like our
team would be stuck trying to add complexity to controllers
to handle edge cases when good controllers are able to
handle edge cases without unnecessary complexity.

5.3 Trevor Johst
I believe the biggest lesson that I learned from the final
challenge was that performance earlier in the class can have
a large snowball effect later down the road. We spent a lot
of time trying to improve aspects of earlier labs for the
final challenge, and had we managed to get them done
better when we initially did them everything would have
gone much smoother. This is likely really a lesson about
spreading work out more throughout the semester, but
recognizing when a solution will effect later solutions is
likely important and putting in the time to fix it when that
time is more available.

5.4 Maxwell Zetina-Jimenez
This final challenge was eventful. It was great to see many
components come together for an integrated product. To
accomplish this, however, it involved careful organization. I
learned about the importance and advantages of modularity
in system design. Modularity made it easier to debug and
integrate components. It is a great technique to employ
as systems grow in size and complexity. I also learned
that teamwork becomes even more important with larger



ROBOTICS: SCIENCE AND SYSTEMS, MAY 13 2024 7

projects. Sometimes we would make progress, then try a fix,
and then try to go back to our previous but would find it
difficult to remember what we had. Then we would bounce
between forward progress and backward progress. Logging
and great organization become even more necessary in a
larger project like this.

5.5 Ellen Zhang
For the final challenge, I believe we may have saved more
time if we had planned and started earlier, particularly for
the Luigi’s mansion part (Fig. ??), as much of the first week
was spent trying to figure out what was going on. This
would have helped a lot, to be able to do more testing, as
a large bottleneck towards the end was the amount of time
and effort it requires to launch the car in real life and debug
it. Overall, however, I learned a lot, both technically and as
a teammate, and enjoyed the experience.

REFERENCES

[1] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in 2007
American Control Conference, 2007, pp. 2296–2301.

[2] May 2023. [Online]. Available:
https://www.youtube.com/watch?v=fAqhcy7ePIt = 32s


